endüstriyel arduino kütüphaneleri etiketine sahip kayıtlar gösteriliyor. Tüm kayıtları göster
Birçok insan arduinonun endüstriyel boyutta kullanılıp, kullanılamayacağı konusunda tartışma içerisinde.
Bunun tam olarak cevabını sizlere veremesemde,arduino için yazılmış ve endüstriyel uygulamalarda kullanılması kaçınılmaz kütüphanelerden bahsetmek istiyorum.
1. Modbus Kütüphanesi :Bunun tam olarak cevabını sizlere veremesemde,arduino için yazılmış ve endüstriyel uygulamalarda kullanılması kaçınılmaz kütüphanelerden bahsetmek istiyorum.
Endüstride birçok cihaz ve plc kendi aralarında ya da scada gibi yönetim sistemleri ile haberleşme durumundadır.Modbus ise endüstriyel cihazlar arasında haberleşme metodu olarak kullanılan en yaygın yöntemlerden biridir.
#include <SoftwareSerial.h> /*-----( Declare Constants and Pin Numbers )-----*/ #define SSerialRX 10 //Serial Receive pin #define SSerialTX 11 //Serial Transmit pin #define SSerialTxControl 3 //RS485 Direction control #define RS485Transmit HIGH #define RS485Receive LOW #define Pin13LED 13 /*-----( Declare objects )-----*/ SoftwareSerial RS485Serial(SSerialRX, SSerialTX); // RX, TX /*-----( Declare Variables )-----*/ int byteReceived; int byteSend; void setup() /****** SETUP: RUNS ONCE ******/ { // Start the built-in serial port, probably to Serial Monitor Serial.begin(9600); Serial.println("YourDuino.com SoftwareSerial remote loop example"); Serial.println("Use Serial Monitor, type in upper window, ENTER"); pinMode(Pin13LED, OUTPUT); pinMode(SSerialTxControl, OUTPUT); digitalWrite(SSerialTxControl, RS485Receive); // Init Transceiver // Start the software serial port, to another device RS485Serial.begin(4800); // set the data rate }//--(end setup )--- void loop() /****** LOOP: RUNS CONSTANTLY ******/ { digitalWrite(Pin13LED, HIGH); // Show activity if (Serial.available()) { byteReceived = Serial.read(); digitalWrite(SSerialTxControl, RS485Transmit); // Enable RS485 Transmit RS485Serial.write(byteReceived); // Send byte to Remote Arduino digitalWrite(Pin13LED, LOW); // Show activity delay(10); digitalWrite(SSerialTxControl, RS485Receive); // Disable RS485 Transmit } if (RS485Serial.available()) //Look for data from other Arduino { digitalWrite(Pin13LED, HIGH); // Show activity byteReceived = RS485Serial.read(); // Read received byte Serial.write(byteReceived); // Show on Serial Monitor delay(10); digitalWrite(Pin13LED, LOW); // Show activity } }//--(end main loop )--- /*-----( Declare User-written Functions )-----*/ //NONE //*********( THE END )***********
Slave Arduino
#include <SoftwareSerial.h> /*-----( Declare Constants and Pin Numbers )-----*/ #define SSerialRX 10 //Serial Receive pin #define SSerialTX 11 //Serial Transmit pin #define SSerialTxControl 3 //RS485 Direction control #define RS485Transmit HIGH #define RS485Receive LOW #define Pin13LED 13 /*-----( Declare objects )-----*/ SoftwareSerial RS485Serial(SSerialRX, SSerialTX); // RX, TX /*-----( Declare Variables )-----*/ int byteReceived; int byteSend; void setup() /****** SETUP: RUNS ONCE ******/ { // Start the built-in serial port, probably to Serial Monitor Serial.begin(9600); Serial.println("SerialRemote"); // Can be ignored pinMode(Pin13LED, OUTPUT); pinMode(SSerialTxControl, OUTPUT); digitalWrite(SSerialTxControl, RS485Receive); // Init Transceiver // Start the software serial port, to another device RS485Serial.begin(4800); // set the data rate }//--(end setup )--- void loop() /****** LOOP: RUNS CONSTANTLY ******/ { //Copy input data to output if (RS485Serial.available()) { byteSend = RS485Serial.read(); // Read the byte digitalWrite(Pin13LED, HIGH); // Show activity delay(10); digitalWrite(Pin13LED, LOW); digitalWrite(SSerialTxControl, RS485Transmit); // Enable RS485 Transmit RS485Serial.write(byteSend); // Send the byte back delay(10); digitalWrite(SSerialTxControl, RS485Receive); // Disable RS485 Transmit // delay(100); }
2. PID Kütüphanesi:
Endüstriyel otomasyon projelerinde kontrol metodlarının olmazsa olmazıdır.Birçok uygulamada giriş ve çıkışa bağımlı olarak pid üzerinden kontrol metodları uygulanır.Arduino için pid kütüphanesi kullanmaz endüstriye bazda bir uygulama yapmak istiyorsak kaçınılmaz.
pid.h :
#ifndef PID_v1_h
#define PID_v1_h
#define LIBRARY_VERSION 1.1.1
class PID
{
public:
//Constants used in some of the functions below
#define AUTOMATIC 1
#define MANUAL 0
#define DIRECT 0
#define REVERSE 1
//commonly used functions **************************************************************************
PID(double*, double*, double*, // * constructor. links the PID to the Input, Output, and
double, double, double, int); // Setpoint. Initial tuning parameters are also set here
void SetMode(int Mode); // * sets PID to either Manual (0) or Auto (non-0)
bool Compute(); // * performs the PID calculation. it should be
// called every time loop() cycles. ON/OFF and
// calculation frequency can be set using SetMode
// SetSampleTime respectively
void SetOutputLimits(double, double); //clamps the output to a specific range. 0-255 by default, but
//it's likely the user will want to change this depending on
//the application
//available but not commonly used functions ********************************************************
void SetTunings(double, double, // * While most users will set the tunings once in the
double); // constructor, this function gives the user the option
// of changing tunings during runtime for Adaptive control
void SetControllerDirection(int); // * Sets the Direction, or "Action" of the controller. DIRECT
// means the output will increase when error is positive. REVERSE
// means the opposite. it's very unlikely that this will be needed
// once it is set in the constructor.
void SetSampleTime(int); // * sets the frequency, in Milliseconds, with which
// the PID calculation is performed. default is 100
//Display functions ****************************************************************
double GetKp(); // These functions query the pid for interal values.
double GetKi(); // they were created mainly for the pid front-end,
double GetKd(); // where it's important to know what is actually
int GetMode(); // inside the PID.
int GetDirection(); //
private:
void Initialize();
double dispKp; // * we'll hold on to the tuning parameters in user-entered
double dispKi; // format for display purposes
double dispKd; //
double kp; // * (P)roportional Tuning Parameter
double ki; // * (I)ntegral Tuning Parameter
double kd; // * (D)erivative Tuning Parameter
int controllerDirection;
double *myInput; // * Pointers to the Input, Output, and Setpoint variables
double *myOutput; // This creates a hard link between the variables and the
double *mySetpoint; // PID, freeing the user from having to constantly tell us
// what these values are. with pointers we'll just know.
unsigned long lastTime;
double ITerm, lastInput;
unsigned long SampleTime;
double outMin, outMax;
bool inAuto;
};
#endif
pid.cpp:
#if ARDUINO >= 100
#include "Arduino.h"
#else
#include "WProgram.h"
#endif
#include <PID_v1.h>
/*Constructor (...)*********************************************************
* The parameters specified here are those for for which we can't set up
* reliable defaults, so we need to have the user set them.
***************************************************************************/
PID::PID(double* Input, double* Output, double* Setpoint,
double Kp, double Ki, double Kd, int ControllerDirection)
{
myOutput = Output;
myInput = Input;
mySetpoint = Setpoint;
inAuto = false;
PID::SetOutputLimits(0, 255); //default output limit corresponds to
//the arduino pwm limits
SampleTime = 100; //default Controller Sample Time is 0.1 seconds
PID::SetControllerDirection(ControllerDirection);
PID::SetTunings(Kp, Ki, Kd);
lastTime = millis()-SampleTime;
}
/* Compute() **********************************************************************
* This, as they say, is where the magic happens. this function should be called
* every time "void loop()" executes. the function will decide for itself whether a new
* pid Output needs to be computed. returns true when the output is computed,
* false when nothing has been done.
**********************************************************************************/
bool PID::Compute()
{
if(!inAuto) return false;
unsigned long now = millis();
unsigned long timeChange = (now - lastTime);
if(timeChange>=SampleTime)
{
/*Compute all the working error variables*/
double input = *myInput;
double error = *mySetpoint - input;
ITerm+= (ki * error);
if(ITerm > outMax) ITerm= outMax;
else if(ITerm < outMin) ITerm= outMin;
double dInput = (input - lastInput);
/*Compute PID Output*/
double output = kp * error + ITerm- kd * dInput;
if(output > outMax) output = outMax;
else if(output < outMin) output = outMin;
*myOutput = output;
/*Remember some variables for next time*/
lastInput = input;
lastTime = now;
return true;
}
else return false;
}
/* SetTunings(...)*************************************************************
* This function allows the controller's dynamic performance to be adjusted.
* it's called automatically from the constructor, but tunings can also
* be adjusted on the fly during normal operation
******************************************************************************/
void PID::SetTunings(double Kp, double Ki, double Kd)
{
if (Kp<0 || Ki<0 || Kd<0) return;
dispKp = Kp; dispKi = Ki; dispKd = Kd;
double SampleTimeInSec = ((double)SampleTime)/1000;
kp = Kp;
ki = Ki * SampleTimeInSec;
kd = Kd / SampleTimeInSec;
if(controllerDirection ==REVERSE)
{
kp = (0 - kp);
ki = (0 - ki);
kd = (0 - kd);
}
}
/* SetSampleTime(...) *********************************************************
* sets the period, in Milliseconds, at which the calculation is performed
******************************************************************************/
void PID::SetSampleTime(int NewSampleTime)
{
if (NewSampleTime > 0)
{
double ratio = (double)NewSampleTime
/ (double)SampleTime;
ki *= ratio;
kd /= ratio;
SampleTime = (unsigned long)NewSampleTime;
}
}
/* SetOutputLimits(...)****************************************************
* This function will be used far more often than SetInputLimits. while
* the input to the controller will generally be in the 0-1023 range (which is
* the default already,) the output will be a little different. maybe they'll
* be doing a time window and will need 0-8000 or something. or maybe they'll
* want to clamp it from 0-125. who knows. at any rate, that can all be done
* here.
**************************************************************************/
void PID::SetOutputLimits(double Min, double Max)
{
if(Min >= Max) return;
outMin = Min;
outMax = Max;
if(inAuto)
{
if(*myOutput > outMax) *myOutput = outMax;
else if(*myOutput < outMin) *myOutput = outMin;
if(ITerm > outMax) ITerm= outMax;
else if(ITerm < outMin) ITerm= outMin;
}
}
/* SetMode(...)****************************************************************
* Allows the controller Mode to be set to manual (0) or Automatic (non-zero)
* when the transition from manual to auto occurs, the controller is
* automatically initialized
******************************************************************************/
void PID::SetMode(int Mode)
{
bool newAuto = (Mode == AUTOMATIC);
if(newAuto == !inAuto)
{ /*we just went from manual to auto*/
PID::Initialize();
}
inAuto = newAuto;
}
/* Initialize()****************************************************************
* does all the things that need to happen to ensure a bumpless transfer
* from manual to automatic mode.
******************************************************************************/
void PID::Initialize()
{
ITerm = *myOutput;
lastInput = *myInput;
if(ITerm > outMax) ITerm = outMax;
else if(ITerm < outMin) ITerm = outMin;
}
/* SetControllerDirection(...)*************************************************
* The PID will either be connected to a DIRECT acting process (+Output leads
* to +Input) or a REVERSE acting process(+Output leads to -Input.) we need to
* know which one, because otherwise we may increase the output when we should
* be decreasing. This is called from the constructor.
******************************************************************************/
void PID::SetControllerDirection(int Direction)
{
if(inAuto && Direction !=controllerDirection)
{
kp = (0 - kp);
ki = (0 - ki);
kd = (0 - kd);
}
controllerDirection = Direction;
}
/* Status Funcions*************************************************************
* Just because you set the Kp=-1 doesn't mean it actually happened. these
* functions query the internal state of the PID. they're here for display
* purposes. this are the functions the PID Front-end uses for example
******************************************************************************/
double PID::GetKp(){ return dispKp; }
double PID::GetKi(){ return dispKi;}
double PID::GetKd(){ return dispKd;}
int PID::GetMode(){ return inAuto ? AUTOMATIC : MANUAL;}
int PID::GetDirection(){ return controllerDirection;}
3. Map Fonksiyonu:
Map fonksiyonunu bizim için çok önemli kılan özelliği, belirli bir giriş aralığına göre çıkış aralığı tanımlayabilmemiz.Buda bize endüstriyel otomasyon bazında gerek kompanzasyon gerekse analog çıkış atamak istediğimizde belirli set değerleri arasında bir çıkış verebilmemize olanak sağlıyor.
/* Map an analog value to 8 bits (0 to 255) */
void setup() {}
void loop()
{
int val = analogRead(0);
val = map(val, 0, 1023, 0, 255);
analogWrite(9, val);
}
void setup() {}
void loop()
{
int val = analogRead(0);
val = map(val, 0, 1023, 0, 255);
analogWrite(9, val);
}
Endüstriyel birçok projede birden fazla cihazla haberleşmede daha önce bahsettiğimiz modbus protokolünün yanı sıra birden fazla seri haberleşme metoduna da ihtiyaç duyulabilmektedir.
SoftwareSerial mySerial(10, 11); // RX, TX
void setup() {
// Open serial communications and wait for port to open:
Serial.begin(57600);
while (!Serial) {
; // wait for serial port to connect. Needed for Leonardo only
}
Serial.println("Goodnight moon!");
// set the data rate for the SoftwareSerial port
mySerial.begin(4800);
mySerial.println("Hello, world?");
}
void loop() { // run over and over
if (mySerial.available()) {
Serial.write(mySerial.read());
}
if (Serial.available()) {
mySerial.write(Serial.read());
}
}
void setup() {
// Open serial communications and wait for port to open:
Serial.begin(57600);
while (!Serial) {
; // wait for serial port to connect. Needed for Leonardo only
}
Serial.println("Goodnight moon!");
// set the data rate for the SoftwareSerial port
mySerial.begin(4800);
mySerial.println("Hello, world?");
}
void loop() { // run over and over
if (mySerial.available()) {
Serial.write(mySerial.read());
}
if (Serial.available()) {
mySerial.write(Serial.read());
}
}